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Abstract

This is the second talk of a lecture series on groundbreaking theorems in
geometry! Whether you’re a first-year student or a seasoned peer mentor, this
lecture should be equally accessible and compelling.

This session explores the Ham Sandwich Theorem, a powerful and versatile
tool in incidence geometry and general geometric theory.

The folklore phrasing asks the following: Can you always slice a ham sand-
wich into two equal halves, no matter how the bread and ham are shaped? What
if you add a slice of cheese? How do these cuts look, and how can we calculate
where to make them? We will use these questions to start our conversation on
how we can cut bounded open sets using hyperplanes and hypersurfaces, two
extremely useful tools in geometry that everybody should know how to work
with effectively. We will intuitively and rigorously define every notion along
the way so do not fret if those words are unfamiliar. This theorem illustrates
the beauty of hyperplanes and hypersurfaces in action. But that’s not all! For
our proof of the Ham Sandwich theorem, we need the Borsuk-Ulam Theorem,
which illustrates how some theorems can have many many different rephrasings
that seem different but are actually equivalent. Finally, we will venture out into
the lesser-known (yet equally intriguing and useful) Polynomial Ham Sandwich
theorem. Expect lots of stunning visuals that will bring textbook definitions to
life.
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Introduction to the Classical Ham Sandwich The-
orem

Imagine you have a rectangular piece of cake and a circular drop of white frosting
on top, as shown below.

Question: Can you draw a line going through the cake and frost-
ing that bisects both the frosting and the cake no matter where the
frosting is on the cake?

By bisect, I mean split into two sets of equal Lebesgue measures.1

Answer: The answer to the question away above is clearly yes
since this can always be done by finding the center of each shape and
drawing a line through the center points.

The question that follows is if we can do this for shapes without a symmet-
rical center. From now on in this lecture, we are curious about not just any
shapes, but rather only bounded open sets.2

Pulling the idea of bisecting shapes without symmetrical centers and the

1See bottom of document for a formal definition of Lebesgue measure, but the intuitive
idea is that Lebesgue measure is just a way to measure the size of a set and is especially useful
for funky-looking sets. To find the size of a funky (or not funky) set, we first cover it with
a minimum tilling (a covering set where the total measure–length, area, volume, etc.—of the
tiles used is minimized). The sum of the measures of all the tiles in the minimum covering
is the Lebesgue Measure. For a two-dimensional shape like a circle, the measure is the area.
For a box, the measure is the volume, etc.

2See bottom of document for formal definitions of bounded and open. However, intuitively,
a bounded set is a set such that if I were to take a big enough box, I could fix the whole set
inside. Also intuitively, an open set is a closed set where we remove the boundary (can imagine
taking a polygon and removing the edges).
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idea of bounded open sets, we get the following question.

Question: Let’s say I have two bounded open sets in R2. Can I
draw a line to bisect both of these no matter what the two bounded
open sets are?

The image below illustrates splitting two bounded open sets using a line. If
the area of the red and pink are equal, then the line bisects that bounded open
set. The same goes for the second bounded open set.

Answer: The picture seems to suggest that the answer to the
question above is yes, meaning that we can always find a line to
split two bounded open sets no matter how funky-looking they are.
However, this statement is much more difficult to prove than the case
for the rectangular cake and circular frosting. We will get back to
proving this later.

What if we add a third open bounded set? Can we still find such a line that
splits all sets into equal measures? More formally,

Question: Let’s say I have three bounded open sets in R2. Can I
draw a line to bisect both of these no matter what the three bounded
open sets are?
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Answer: The picture suggests that something breaks down when
we add more bounded open sets.

So when we are working in two dimensions, it seems like if we have two sets
we can always draw a line to split them in half. But when we add more sets, it
is obvious that most of the time there will not be such a line. How can we fix
this issue? How can we split three bounded open sets?

One way to fix this would be to go into a higher dimension. If we have three
open bounded sets in R3 rather than in R3, we can conjecture that there will
always be such a way that each set is split into two sections of equal Lebesgue
measure. The three bounded open sets can be thought of as two pieces of bread
and a slice of ham, as shown below. So the question can be rephrased to ask:

Question: ”Can we slice a ham sandwich into equal halves no
matter how the bread and ham are shaped?”

The image below illustrates the situation.

4



Answer: As the picture suggests, it is possible to cut 3 bounded
open sets in R3 using a plane.

It appears that there is a pattern...In R2 we can bisect up to 2 bounded open
sets. In R3 we can bisect up to 3 bounded open sets. What happens in R4?
What happens after that?

In order to generalize the number of bounded open sets we can bisect in
higher dimensional spaces, we need to generalize what we can use to make our
cuts.

To tackle this, we will formalize the cutting tools in the lower dimensions,
and then try to find something equivalent for the higher ones.

In the first case, R2, we use a line, so the equation should be of the form
h(x1, x2) = h0 + h1x1 + h2x2 = 0. In R3, we use a plane, which has the form
h0 + h1x1 + h2x2 + h3x3 = 0. Notice that for both, the function h splits our
space into two sections: h(x) > 0 and h(x) < 0 (by intermediate value theorem).
What we are describing here are specific cases of something called a hyperplane.

Hyperplane

In Rn, a hyperplane is an (n-1)-dimentional subspace that divides Rn

into two half-spaces. We define it as the set of points x = (x1, x2, ...xn)
that satisfy a linear equation of the form h0 + h1x1 + h2x2...hnxn.

We use the notation H+ to denote the subspace where h has a positive value,
and similarly use H− to denote the subspace where h has a negative value.

Generalizing the idea of using a hyperplane to cut bounded open sets, we get
the classical Ham Sandwich Theorem. Informally, the Ham Sandwich theorem
says that any n (finite) bounded open sets in Rn can be simultaneously bisected
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by a hyperplane. Formally,

Classical Ham Sandwich Theorem

Let U1, ...Un ⊂ Rn be bounded open sets. Then there exists a hyperplane
H = {x ∈ Rn|h(x) = 0} (with h(x) a degree one polynomial in n vari-
ables) such that for each i ∈ [n] the two sets Ui∩H+ = {x ∈ Ui|h(x) > 0}
and Ui ∩ H−|h(x) < 0 have equal Lebesgue measure. In this case, we
say that H bisects each of the U ′

is.

Below is an example of what it would mean to bisect a bounded open set U1

in R2 using a hyperplane h(x1, x2) = h0 + h1x1 + h2x2 = 0 into the sections as
stated in the theorem.

Proof of Ham Sandwich Theorem

Defining Tools for Proof of Ham Sandwich Theorem

A short proof to the classical Ham Sandwich Theorem uses a famous result
called the Borsuk-Ulam Theorem. This theorem is really useful to this proof,
but it is also interesting in and of itself because it is a theorem with several
equivalent versions that seem completely different but actually imply the same
thing. It is also a good theorem to remember because there are also numerous
other applications of it beyond the Ham Sandwich Theorem.

In order to understand the Borsuk-Ulam theorem, we need to know one
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definition.

Imagine you had a one-dimensional unit sphere where points on opposite
sides were assigned the same magnitude with different signs. This property is
called antipodal symmetry. More generally,

Antipodal Symmetry

Let Sn be the n-dimensional unit sphere in Rn+1. For any point x
on Sn, the antipodal point of x is denoted by −x, which is the point
directly opposite to x through the center of the sphere. A function f is
said to have antipodal symmetry if it satisfies the following condition:
f(−x) = −f(x) for all x in the domain.

Many of the formulation of the Borsuk-Ulam theorem use antipodal symme-
try.

One of the versions of the Borsuk–Ulam theorem, and in my opinion, the one
that is easiest to remember, intuitively states that for any continuous function
from the sphere to Euclidean space that respects antipodal symmetry, there is
a point on the sphere that maps to the origin. Formally,

Borsuk-Ulam Theorem Formulation 1

For every continuous mapping f : Sn 7→ Rn, there exists a point x ∈ Sn

such that f(x) = f(−x).

To visualize this theorem in R2, we can imagine the following: Take a rubber
ball, deflate and crumple it, and lay it on the ground. According to the Borsuk-
Ulam theorem, there will be two points x and -x on the surface of the ball that
were diametrically opposite (antipodal) and now are lying on top of one another!
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There are many equivalent statements that sound completely different. Some
of the easiest-to-understand formulations are below.
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Borsuk-Ulam Theorem Equivalent Statements

There is no continuous mapping f : Bn 7→ Sn−1 that is antipodal on the
boundary, i.e., satisfies f(−x) = f(x) for all x ∈ Sn−1 = δBn

For any cover F1, ..., Fn+1 of the sphere S
n by n+1 closed sets, there is at

least one set containing a pair of antipodal points (that is, Fi ∩ (−Fi) ̸=
ø).

There is no antipodal mapping f : Sn 7→ Sn−1

For any cover U1, ..., Un+1 of the sphere Sn by n+1 open sets, there is at
least one set containing a pair of antipodal points.

One of the versions of the Borsuk–Ulam theorem, states the
following. Let Sn ⊂ Rn+1 be the n-dimensional unit sphere and
let f : Sn 7→ Rn be a continuous map such that f(−x) = −f(x) for
all x ∈ Sn (such a map is called antipodal). Then there exists
x such that f(x) = 0.

It is a good exercise to think about why these two statements are equivalent,
but we will only use the last formulation (in bold) for the Ham Sandwich theorem
proof. Let’s explore what the last formulation really means using an example.

Below are two examples of different functions f with the property described
in the assumption of the theorem for R1. You can imagine the situation below
as somebody throwing a string on a line so that two points on opposite sides
of the string end up having opposite values. The picture below illustrates how
there will have to be a pair of antipodal points that map to 0.
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Isn’t it interesting how this statement about throwing a string on a line so
that there is a point that maps to 0 and the statement about squishing a rubber
ball implying having points that end up on top of one another are equivalent
statements?

Now that we have explored the Borsuk-Ulam theorem, we have all the blocks
to finally prove the Ham Sandwich theorem.

Actual proof of Ham Sandwich Theorem:

We assume all of the notation defined above. So, just to summarize, we are
cutting our bounded open sets using hyperplanes, and each hyperplane corre-
sponds to some degree one polynomial h(x1, ...xn) = h0 + h1x1 + ...hnxn = 0.
The hyperplane, by definition, splits the space into two subspaces (positive and
negative), which we call H+ and H−.

We discovered at the Ross program, we can represent any polynomial using a
list of its coefficients. Since we only need to know about the sign of h to make the
proper cut, we can represent the hyperplane as a scaled version of its coefficients
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where the coefficients are scaled to form a unit vector vh = (h0, h1, ...hn). This
means Vh ∈ Sn ⊂ Rn+1. We define a function f : Sn 7→ Rn where f(vh) =
(y1, y2, ..yn) such that

f(vh) = (|H+ ∩ Ui| − |H− ∩ Ui|)i∈[n]

where |H+ ∩ Ui| is the measure of the part of Ui on the positive side of the
hyperplane and |H− ∩ Ui| is the measure of the part of Ui on the negative side
of the hyperplane.

Expanding, we can see what the function actually does for each Ui.

y1 = |H+ ∩ U1| − |H− ∩ U1|

y2 = |H+ ∩ U2| − |H− ∩ U2|
...

yn = |H+ ∩ Un| − |H− ∩ Un|

Notice that f is continuous. It is also clear that f(−vh) = −f(vh) because
−vh = (−h0,−h1, ...−hn), so f(−vh) = (−y1, y2, ..., yn), which defines the same
space just switching the location of H+ and H− (|H− ∩ U1| − |H+ ∩ U1|).

Since f is continuous and f(−vh) = −f(vh), all of the conditions of the
Borsuk-Ulam theorem are met, and we can apply it to conclude that there
exists a zero of f. In other words, there exists a hyperplane h(x) such that
yi = |H+ ∩ Ui| − |H− ∩ Ui| = 0 for all i’s. This means that there exists a
hyperplane that bisects each of the Ui’s into sets of equal Lebesgue measure.
This completes the proof the the Classical Ham Sandwich theorem.

Polynomial Ham Sandwich Theorem

The Polynomial Ham Sandwich theorem is an extension of the Ham Sandwich
Theorem that enables us to cut a higher number of bounded open sets at the
same time. However, in order to do this, hyperplanes are not enough. We
must employ another tool to split our space into subspaces that allows for more
degrees of freedom, and this tool is called a ”hypersurface.”

Hypersurface

A hypersurface is a set H = {x ∈ Rn|h(x) = 0}, where now h can be a
polynomial of arbitrary degree d.

Now that we know what we are cutting with, we can formally state the
Polynomial Ham Sandwich Theorem.
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Polynomial Ham Sandwich Theorem

Let U1, ..., Ut ∈ Rn be bounded open sets with t <
(
n+d
d

)
. Then there

exists a degree d hypersurface H that bisects each of the sets Ui, i ∈ [t].

If t = n, then we are in the case of the classical theorem and use hyperplanes
to make the bisection. If n < t <

(
n+d
d

)
, then we need to use hypersurfaces.

Proof. The proof is identical to the degree one proof. We identify each degree
d hypersurface with its (unit) vector of coefficients and apply the Borsuk-Ulam
theorem on the function f mapping to the differences of the measures of the

The
(
n+d
d

)
bound arises from the fact that there are

(
n+d
d

)
coefficients in

a polynomial of degree d with n variables and each term of the hyperspace
corresponds to an equation yi = |H+ ∩ Ui| − |H− ∩ U1| = 0. There need to
be enough terms in the polynomial to have a non-trivial solution yi = 0 ∀i. If
there are too many U ′

is”, the hypersurface doesn’t have enough terms to have
a nontrivial solution to all equations.
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Formalized Definitions (Referred to above)

Open Set

In Rn an open set U is one that has the property that for any point x in
U, there exists a positive radius r such that all points within the distance
r from x (forming an open ball around x) are also contained within U.

Bounded Set

In Rn a set A is bounded if there exists a real number M and a point x
in the space such that the distance d(x,y) is less than M for all points y
in A. In other words, all points in the set are within a finite distance M
from some fixed point x.

Lebesgue Measure

The formal definition involves considering all possible countable cover-
ings and taking the infimum of the total ”volume” of these coverings.
Specifically, for a set A ⊂ Rn, its Lebesgue measure µ(A) is defined as

µ(A) = inf{
∑∞

i=1 li : A ⊆
⋃∞

i=1 Si and each Si is a rectangular box with
measure li}
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