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Abstract

This is the first talk of a lecture series on geometry theorems. The first talk
of this series explores the types of questions that define Incidence Geometry,
focusing on the famous Sylvester-Gallai Theorem and the intriguing questions
(including open ones) that stem directly from it. I also introduce projective
spaces, a useful tool for many areas of geometry, and demonstrate how they can
be beautifully put into action to solve problems related to the Sylvester-Gallai
Theorem. We also look at progress made on defining bounds related to the
theorem using projective space. To conclude, I explain the principle of duality,
and we revisit the Sylvester-Gallai Theorem, but now in its dual form. The
concept of duality in a real projective plane is one everybody should explore at
least once in their life.

Introduction to Incidence Geometry

Incidence geometry explores the properties of incidence structures, which consist
of two fundamental elements: points and lines. The core focus is on their mutual
relationship, known as incidence. Unlike other branches of geometry, incidence
geometry disregards factors such as angles, continuity, and length, as well as
the concept of betweenness. In this context, the sequence of points on a line is
irrelevant; the sole concern is whether or not a point lies on a given line.

Incidence

Incidence of a Point and a Line: A point p is said to be incident with a
line l if p ∈ l.

Other types of incidences also exist; they include point-line, point-plane
incidence, line circle incidence, and line surface incidence.
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Introduction to Silvester-Gallai Theorem

Every finite set of points in the plane naturally defines a set of lines, the con-
necting lines.

Connecting Line

A connecting line is a line passing through at least two points of the set.

The Silvester-Gallai theorem is a theorem concerned with a specific type of
connecting line called an ordinary line.

Ordinary Line

In combinatorial geometry, an ordinary line for a given finite point set
P is defined as a connecting line that passes through exactly two points
of P (a line with two point-line incidences).

Notation

Let ol(n) denote the minimum number of ordinary lines determined by
n non-collinear points in the plane.

Let’s examine the incidence relationships between points and lines in a typ-
ical example of an incidence geometry theorem, exploring how a set of points in
a plane must give rise to specific connecting lines and, more precisely, specific
ordinary lines.

Imagine 3 points in a plane. Can we always draw an ordinary line? If they
aren’t co-linear, obviously, yes. If they are co-linear, obviously, no.

What if we add more points? For n points, we can think of a construction
where there are only 3 ordinary lines. Since there are no constructions out of 3
points with less ordinary lines, ol(4)=3. From now on, we will always exclude
the case of co-linear points because there will clearly never be any ordinary lines
in that case, as the one line we can draw through the points will have too many
points on it.

If we have four non-co-linear points, it is also easy to see that we can draw
an ordinary line no matter how we rearrange them.

What if we add a 5th point to the previous drawing? It seems like, still,
there are ordinary lines.

What about for 6 points?
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What about 7 points?

It seems completely trivial that there are always ordinary lines for small n,
but what about when n gets larger?

This question was originally posed by James Joseph Sylvester in 1893. His
specific words are as follows:

”Is it true that any finite set of points in the plane, not all on a single line,
contains two points such that their connecting line does not pass through a third
point?”

Mathematicians worked on the problem for many decades. Then, finally,
40 years later, Tibor Grünwald (Gallai) proved that the answer was yes with a
3-line proof, shocking the math community.

Sylvester-Gallai Theorem

For any finite set of points in the plane, not all of which are collinear,
there exists an ordinary line.

Proof of Sylvester-Gallai Theorem

Take a set of points P in R2 consisting of n points. Choose one point p1 out
of our set of points, as shown in Fig (a) below. Next, consider all lines going
through at least 2 points and not going through the chosen point. Out of all
lines, we choose the line with the smallest distance from p1 and call it l1. This
is depicted in Fig (b).

Take another point, p2, and look at all lines going through at least 2 points
in the set and not going through p2. Find the closest such line to p2 and call it
l2, as shown in Fig (c). Repeating this process for all points in our set P results
in n ”point-line” pairs since n is the number of points in our set.
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For each pair, we calculate the distance from the point to the corresponding
line and choose the pair where that distance is the smallest. Call this point and
this line (p0, l0). We chose this pair out of a set where the lines went through at
least 2 points, but it ends up that this pair l0 must go through exactly 2 points
in the set. Let’s see why.

Suppose that this is not true. In other words, there are at least 3 points on
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the line l0. Draw a line from p0 perpendicular to l0 and call the point where
the lines meet H. The point H splits l0 into two rays. At least on one ray, there
are at least 2 points. This does not exclude the case where one of the points
coincides with H.

Look at the ray on which two points are located. Denote the closest of the
points B and the second closest point C. Draw a line between p0 and C and
call it m. Next, draw a line from B perpendicular to l0 and intersecting m at
point K. Next, draw a line from B, which is perpendicular to m, and call the
point where the lines intersect L. It is clear that the length of the segment BK
is strictly greater than the length of the segment BL, but less than or equal to
the length of the segment p0H. Hence, BL < p0H. The line m passes through
at least two points of the set and does not pass through point B. But this fact
contradicts the fact that the distance (p0, l0) is the minimum distance between
a point and a line. This contradiction signifies that our assumption that l0
contains more than 2 points isn’t true, and so it must pass exactly 2 points.
Hence, the Sylvester-Gallai theorem is proven.

Lower Bound on ol(n)

Now that we know that there must exist at least 1 ordinary line for a finite set
of non-colinear points and lines, (ol(n) ≥ 1), it is logical to wonder if the lower
bound is higher. It is commonly believed that the lower bound is in fact higher,
and a fundamental question in this field is determining this lower bound. Dirac
and Motzkin made a conjecture for a possible such bound.
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Dirac-Motzkin Conjecture:

For every n ̸= 7, 13, we have

ol(n) ≥ ⌈n
2
⌉

Remember, n is the number of vertices in a configuration Q.

In the image below, we see that the number of ordinary lines is three, which
is less than ⌈ 7

2⌉. This example is why the conjecture excludes n = 7.

It is also interesting to explore the upper bound of ol(n), which will require
some understanding of projective planes.

Projective Planes

Intuitively speaking, a projective plane is like the real plane, except we also
include points called ”points at infinity.” The projective plane is a completion
of the Euclidean plane.

Point at Infinity

In geometry, a point at infinity is an idealized limiting point at the ”end”
of each line. It is used in projective geometry to complete the Euclidean
Space.

Imagine looking at two railroad tracks going into the distance. The point
where they seem to meet is called the ”point at infinity.”

Take a line in R1. Now add the point at infinity as shown below, and now
we have a line in projective line. It may seem like I added 2 points, but actually,

6



I added only one because these are really the same point: the point at infinity
of this line. It may be easier to think about our line as a circle so the point
at infinity resembles a singular point in this representation rather than two
separate ones (there are also other definitions, which we will not use).

In RP2, we identify classes of lines by whether they are parallel in the Eu-

clidean plane and say that each class of lines intersects in one singular point at
infinity, as shown below.

When you extend a line indefinitely in both directions, it intersects the
”line at infinity” at a unique point. All classes of parallel lines intersect at
the same point at infinity, but different classes intersect the line at infinity at
distinct points. This concept allows for a more comprehensive and symmetrical
treatment of geometric properties and simplifies many theorems.

You can think of a point at infinity as the point where train tracks (parallel
lines) appear to meet, and the horizon as the line at infinity.

Now that we know what projective spaces are, it would be useful to know
how to make configurations where we have specific numbers of points at infinity.
The following lemma helps up build beautiful constructions.

Lemma: A set of connecting lines on a regular polygon with n/2
vertices can naturally define n points total

Using the fact that any regular polygon can be inscribed in a circle, we can
inscribe our regular polygon with n/2 vertices into a circle. Call one vertex A.
Next, draw a tangent to the circle there, and draw a line from A to all of the
other vertices of the shape. The picture below on the left illustrates this process
for a hexagon.
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This should define all of the directions that can be drawn by connecting two
vertices of this shape for the following reason:

We want to show that if we pass a line BC through two points on our hexagon
(two points disjoint from A), then the line parallel to it that goes through A
will be in one of the directions we already drew.

Let l be the line parallel to BC that goes through point A, as shown in the
picture above on the right. Using the fact that parallel chords in the same circle
always cut congruent arcs, we know that arcAE = arcB’D.

Since the shape is regular, the length from around the circumference from
A to E is the same as the distance between any 2 vertices. So, arcBD starting
from B goes a length of 2 the distance between 2 veriticies and the point B’
should coincide with B. Since the line going between any two points is unique,
we see that the line l is actually a direction we already had.

Upper Bound on ol(n)

It is easy to check that ol(3) = 3, ol(4) = 3, ol(5) = 4.
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Upper Bound Theorem

For even n ≥ 6, we have ol(n) ≤ n
2 . For odd n ≥ 6, we have ol(n) ≤ ⌊3n

4 ⌋.

Recall, the ol(n) notation denotes the minimal number of ordinary lines
for number of points, not simply the number of ordinary lines. As long as
we show there is always some configuration of n points where ol(n) equals the
upper bound, we have a proof. Maybe in some other configuration, we can
have less ordinary lines, but that is irrelevant because we are curious about the
maximum number. Maybe some other configuration has more ordinary lines,
but if we show that it is possible to have a configuration where the number of
ordinary lines falls within our bounds, then this is irrelevant because it’s not
the minimal number of ordinary lines.

We split the possible n values into 3 cases,

Case 1: n is even

Constructing the perfect shape:

For our example of n being even, consider a configuration Q with four vertices
(finite points) in PR2. In the picture below, we have 4 directions, which results
in 4 points at infinity. Summing up the finite points and the four points at
infinity, we see that the configuration in PR2 is a shape with n=8 points.
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Let’s take a look at why, in the general case, a regular polygon with n/2
vertices has n/2 directions, which defines n/2 points at infinity. So, to get a
shape with n points, where n is even, we can draw a regular n/2-gon (regular
polygon with n/2 vertices).

□

Now, we know how to build a shape with the number of points we want.
The next step is to count the number of ordinary lines. The key observation
is that the ordinary lines are the ones that are tangent to the vertices. This is
easy to see by looking at the picture above. so the number of ordinary lines is
the number of vertices. Since we have n/2 vertices, we get n/2 ordinary lines.

Example of Case 2 n ≡ 1(mod4) Using n=9

My first goal is to create a 9-point construction. To do this, I take the
8-point shape from before and add 1 point in the center as you can see below.

10



The new shape includes all of the directions we had previously. More gen-
erally, for an n ≡ 1(mod4), n = 4k + 1 for some k ∈ Z, so in that case we
start with a regular polygon of n−1

2 = 2k vertices where the number of vertices
is even. It is important that the number of vertices is even because otherwise
the big diagonals won’t go through the center of the shape. An even-gon with
2k vertices has 2k directions. By adding the new point, we add k ordinary
lines. The total number of ordinary lines is the sum of all the old ordinary
lines and the new ordinary lines, so for n ≡ 1(mod4), there are k + 2k =
3k total directions. This is the same thing as the problem statement because
3⌊n

4 ⌋ = 3⌊ 4k+1
4 ⌋ = 3⌊k + 1

4⌋ = 3k.

Example of Case 3 n ≡ 3(mod4) Using n=7

The construction of a shape with n=7 is as follows. Take the construction
on n+1 points (8 points in this case) and remove 1 point at infinity.
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Since (n-1)/2 is even, all of the ordinary lines are tangent to a vertex be-
cause ordinary lines needed to consist of one finite point and one infinitely
distant point. By taking away this point at infinity, some of the lines that were
previously ordinary became just normal lines going through one point because
they lost the second point, the point at infinity. There will be precisely 2 such
ordinary lines lost because each direction is defined by a pair of lines tangent
to vertices on opposite sides. Removing a point at infinity also creates new
ordinary lines because now lines that consist of two finite points can potentially
be ordinary lines since they don’t have to have another infinitely distant point
on them. How many ordinary lines can we draw on our new shape consisting of

just 2 finite points? The answer is that we can draw
n+1
2 −2

2 such lines because
such a diagonal can be drawn between pairs of points parallel to that direction
on opposite sides of the shape.

So, by removing the point from our configuration with an even number of
points, we lose 2 ordinary lines and gain n−1

2 − 2 ordinary lines. If we let
n = 4k + 3 for some k ∈ Z, then in total, the number of ordinary lines is

n+ 1

2
− 2 +

n+1
2 − 2

2
=

4k + 4

2
− 2 +

4k+4
2 − 2

2
=
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= 2k + 2− 2 +
2k + 2− 2

2
=

2k + k = 3k

As we saw earlier, the theorem’s bound is equivalent.

So, we have looked at all cases, and have seen that the claim is always
satisfied.

Duality in Real Projective Plane

Duality in Real Projective Plane

For every configuration S of points and lines in RP2 we can find a dual
configuration S∗ in RP2 with the following properties.

*Every point in S corresponds to one line in S∗ and vice versa.

*Every line in S corresponds to one point in S∗ and vise versa.

*A point and a line in S are incident if and only if the corresponding line
and point in S∗ are incident.

*A set of points in S is collinear if and only if the corresponding lines in
S∗ are concurrent.

*A set of lines in S is concurrent if and only if the corresponding points
in S∗ are collinear.

(Concurrent lines are three or more lines that intersect at a single point.)

Let’s look at some examples.
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Sylvester-Gallai theorem – dual version

Using the property of duality in the real projective plane we get a new theorem.

Sylvester-Gallai theorem – dual version

Every arrangement of finitely many lines in R2, not all concurrent, and
not all parallel, admits an ordinary point.

At first glance, it may seem like this theorem is quite different from the
original. First of all, the original theorem statement talks about RP2 whereas
this on is in R2. However, this actually doesn’t matter for the following reason.
Since we are working with a finite number of points and lines, we can always
adjust a pair of parallel lines slightly in our construction so that they are no
longer parallel, moving a previous point at infinity to R2, and not changing the
number of other incidences in our set. Using the property of duality in the

projective plane, we do not have to prove the statement. Instead we just know
it is true because the duality of a statement in projective planes is true.
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